Designing fuzzy inference systems from data: An interpretability-oriented review

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing fuzzy inference systems from data: An interpretability-oriented review

Fuzzy inference systems (FIS) are widely used for process simulation or control. They can be designed either from expert knowledge or from data. For complex systems, FIS based on expert knowledge only may suffer from a loss of accuracy. This is the main incentive for using fuzzy rules inferred from data. Designing a FIS from data can be decomposed into two main phases: automatic rule generation...

متن کامل

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

Interpretability issues in data-based learning of fuzzy systems

This paper presents amethod for an automatic and complete design of fuzzy systems fromdata. Themain objective is to build fuzzy systems with a user-controllable trade-off between accuracy and interpretability. Whereas criteria for accuracy mostly follow straightforwardly from the application, definition of interpretability and its criteria are subject to controversial discussion. For this reaso...

متن کامل

Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams

Since the proposal of Zadeh and Mamdani’s seminal ideas, interpretability is acknowledged as one of the most appreciated and valuable characteristics of fuzzy system identification methodologies. It represents the ability of fuzzy systems to formalize the behavior of a real system in a human understandable way. Interpretability analysis involves two main points of view: readability of the knowl...

متن کامل

Improving the interpretability of data-driven evolving fuzzy systems

This paper develops methods for reducing the complexity and, thereby, improving the linguistic interpretability of Takagi-Sugeno fuzzy systems that are learned online in a data-driven, incremental way. In order to ensure the transparency of the evolving fuzzy system at any time, complexity reduction must be performed in an online mode as well. Our methods are evaluated on high-dimensional data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Fuzzy Systems

سال: 2001

ISSN: 1063-6706

DOI: 10.1109/91.928739